

Implementation Plan

Items accomplished

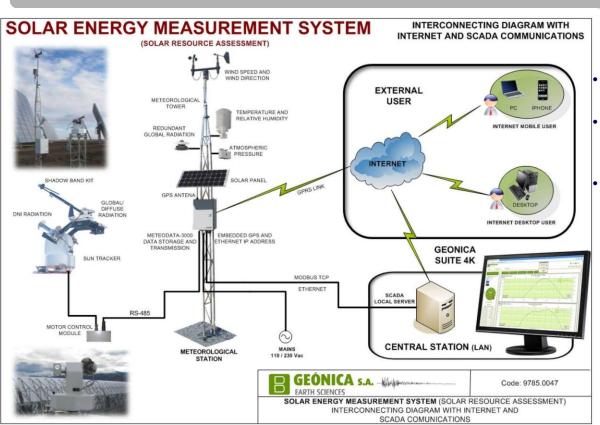
- Obtaining all the permitting and licenses, including authorization to perform civil works, land use and environmental licenses (if required).
- The preparation of the sites (planning and design) and civil works
- In-country storage and transportation
- Equipment installation and commissioning on site
- Operation and Maintenance tasks
- Site security
- Data transmissions and communications fees
- Others fees as rent and land acquisition.

Measurement Campaign started at mid May 2016 (~4 months later)

The Stations

Description of instruments

- Tracker Model SunTracker-3000, Model SP-360
- Pyrheliometer Model GEO-DR02
- Pyranometer Model GEO-SR20, Model SP-101
- Sun photometer Model GEO-SolarSIM-D2
- Shading ring Model SA-3000
- Data Logger Model METEODATA-3016CM, Option VT alphanumeric display (LCD), Option ACM-3000
- **Power Supply** Autonomous Power supply system for the automatic weather Station
- Power heater Model VEN
- Location, time/date info & setup Option GPS
- Mounting hardware Model TM-180-03
- Communication Option Ethernet, Option High-Gain, Option GPRS-IP, Option VipService-4K
- Wind speed and wind direction sensor Model 03002 Wind Sentry
- Barometric pressure sensor Model 61302V, Model 61360
- Temperature and relative humidity Model STH-S331, Model 41003
- Rain level gage Model 52203-20, Model SPL-5200
- Surface temperature sensor Model 285-PT100



The Stations

Physical Magnitudes to be measured

- Solar radiation components: GHI, DNI, DHI, GTI
- Meteorological parameters: pressure, temperature, wind, reltive humidity, precipitation
- Aerosol optical depth (spectral)

The measurement campaign: Operation and Maintenance

Daily/Weekly Tasks

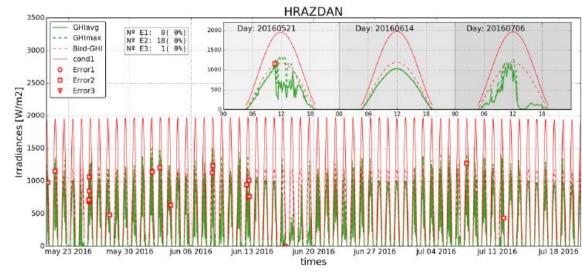
- Cleaning from dust, ice, condensation, adhered matter
- Levelling, pointing, tracking
- Cabling, Power, Data acquisition system
- Data Quality Analysis (4 specific quarterly reports)

Long-term (annual/semi-annual) Tasks

- Status of electrical connections, power, tracking.
- Calibration

Additional independent check

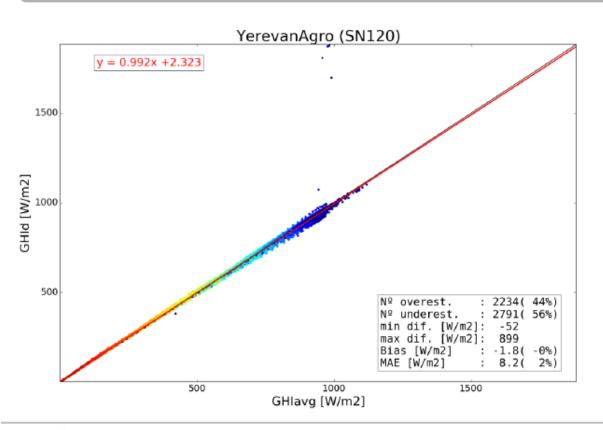
Report Lara-Fanego, 2016: Physical inspection and data analysis


The measurement campaign: Independent inspection

Aditional independent check

- Report Lara-Fanego, 2016: Physical inspection and data analysis
- Stations of high quality

The measurement campaign: Data Quality Analysis



The measurement campaign: Data Quality Analysis

Visual Inspection

Experienced eye: coherence between redundant measurements

24

The measurement campaign: Data Quality Analysis

Automatic tests

"Physically Possible"

		<u> </u>	
Parameter	Minimum	Flag for Minimum	Maximum
Global Horizontal	-4	2	$I_{SC} \varepsilon 1.5 (\cos \theta_z)^{1.2} + 100 W/m^2$
Irradiance (GHI)			
Diffuse	-	-	700 W/m ²
Horizontal			
Irradiance (DIF)			
Diffuse	-4	2	$I_{SC} \varepsilon 0.95 (\cos \theta_z)^{1.2} + 50 W/m^2$
Horizontal			
Irradiance (DIF)			
Direct Normal	-4	2	$I_{SC}~{m arepsilon}$
Irradiance (DNI)			
Direct Normal	-	-	DNI Clear Sky (B _{cs})
Irradiance (DNI)			

The measurement campaign: Data Quality Analysis

Automatic tests

"Across Quantities"

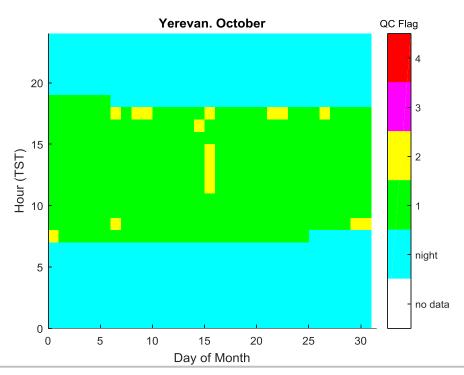
Parameter	Conditions	Limits
$\frac{GHI}{DIF + DNI\cos\theta_z}$	$\theta_z < 75^{\circ}$, DIF + DNI $\cos \theta_z > 50 W / m^2$	1 ± 8%
$\frac{GHI}{DIF + DNI\cos\theta_z}$	$75^{\circ} < \theta_z < 93^{\circ}, DIF + DNI \cos \theta_z > 50 W / m^2$	1 ± 15%
DIF GHI	θ_z < 75°, GHI > 50 W / m^2	< 1.05
$rac{DIF}{GHI}$	$75^{\circ} < \theta_z < 93^{\circ}, GHI > 50 W / m^2$	< 1.10

The measurement campaign: Data Quality Analysis

Automatic tests

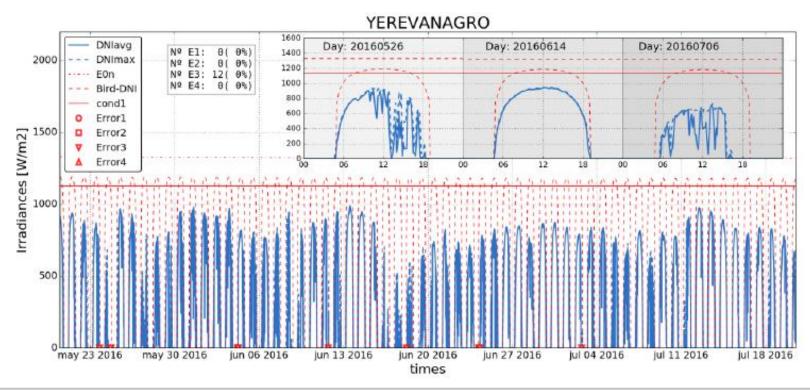
"Extremely Rare"

Parameter	Lower Limit	Upper Limit
DNI \cdot cos $ heta_{ m z}$	(<i>GHI-DIF</i>)-50 W/m ⁻²	(<i>GHI-DIF</i>)+50 W/m ⁻²
GHI-DIF	DNI cos θ_z - 50 W/m ⁻²	DNI cos θ_z + 50 W/m ⁻²



The measurement campaign: Data Quality Analysis

Automatic tests



The measurement campaign: Data Quality Analysis

Automatic tests

The measurement campaign: Data Quality Analysis

Automatic tests

Station	Flag 1	Flag 2	Flag 3	Flag 4
	Data ok	Fail Cross- Component Test	Fail Extremely Rare Range Test	Fail Physically Possible Range Test
Hrazdan	96.1%	3.9%	0%	0%
Masrik	79.4%	20.6%	0%	0%
Yerevan	96.7%	3.3%	0%	0%
Talin	91.7%	9.3%	0%	0%

Main features: pyrheliometer misalignments.

The measurement campaign

Note about Khot station

- Proposed at the final part of the proyect
- Not the same period of measurements
- Not the same variables
- Not included in the preliminary study of site selection
- Finally not included in the map correction
- Quality analysis performed: good results, but limited because of the reduced number of method that can be applied

The measurement campaign

Initial study for optimizing station locations:

- D7. Candidate site identification report (clustering)
- D11. Advice on site selection report

Four quarterly reports on data quality analysis

• D17.Quarterly site resource report (Q1, Q2, Q3, Q4)

Main conclusions

- Stations of high quality. Data are of great value for solar resource assessment in Armenia
- Requiere proper performance of O&M activities (cleaning, aligning, callibration, data quality control)
- Data issues detected are indentified and controled. They were also corrected when possible.
- Redundat measurements allow maintaining temporal homogenity by gaps filling. They are also fundamental for quality check.

ՇՆՈՐՀԱԿԱԼՈՒԹՅՈՒՆ

